Local Error Estimates for Finite Element Discretizations of the Stokes Equations
نویسندگان
چکیده
Local error estimates are derived which apply to most stable mixed finite element discretizations of the stationary Stokes equations. Résumé. Les estimations locales d’erreur obtenues s’appliquent à la plupart des discrétisations stables par éléments finis mixtes du problème de Stokes stationnaire.
منابع مشابه
A Posteriori Error Estimates for Nonlinear Problems. L(0, T ;L(Ω))-Error Estimates for Finite Element Discretizations of Parabolic Equations
Using the abstract framework of [10] we analyze a residual a posteriori error estimator for space-time finite element discretizations of parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-...
متن کاملA Posteriori Error Estimates for Nonconforming Finite Element Schemes
We derive a posteriori error estimates for nonconforming discretizations of Poisson's and Stokes' equations. The estimates are residual based and make use of weight factors obtained by a duality argument. Crouzeix-Raviart elements on triangles and rotated bilinear elements are considered. The quadrilateral case involves the introduction of additional local trial functions. We show that their in...
متن کاملA posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations
— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...
متن کاملNonconforming Finite Elements and the Cascade Iteration 3
We derive suucient conditions under which the Cascade iteration applied to nonconforming nite element discretizations yields an optimal solver. Key ingredients are optimal error estimates of such discretizations, which we therefore study in detail. We derive a new, eecient modiied Morley nite element method. Optimal Cascade iterations are obtained for problems of second, and using a new smoothe...
متن کاملOutput error estimation strategies for discontinuous Galerkin discretizations of unsteady convectiondominated flows
We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection-dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time-integral quantities are considered for scalar outputs and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995